Using spatial metrics to assess crop stressed by pests: Case of wheat fields infested by Diuraphis noxia

Georges F Backoulou¹, Norm C Elliott², Kristopher Giles¹, Jeffrey L. Willers³

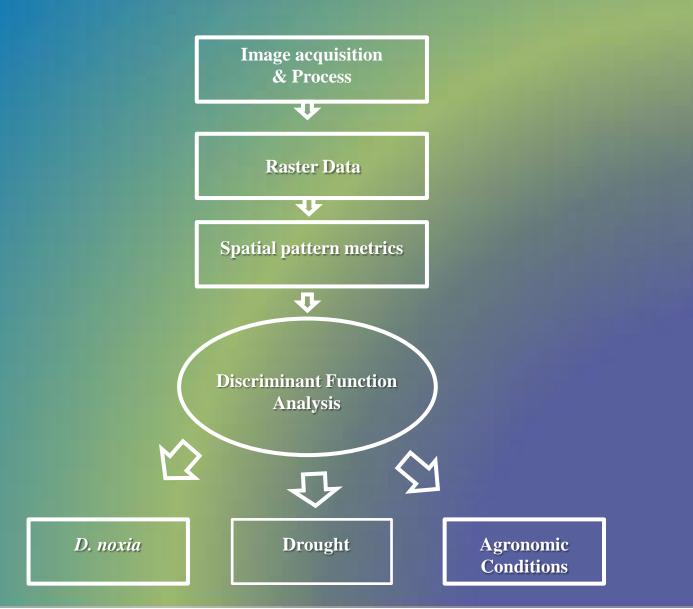
- 1. Oklahoma State University
- 2. USDA-ARS Stillwater, OK
- 3. USDA-ARS Mississippi State, MS

Outline

- Introduction
- Objectives
- Methodology
- Results
- Conclusion

Introduction

- scouting for aphids is time consuming and expensive
- use remote sensing technology to detect stressed areas of wheat fields
- difficult to differentiate stress induced by *D.* noxia from other stress factors
- use spatial pattern metrics from GIS

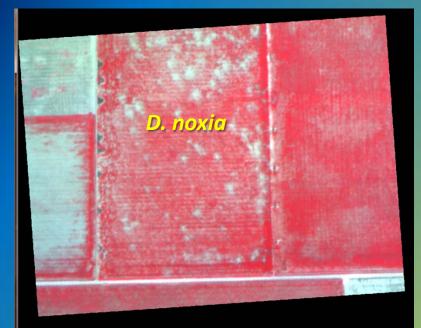


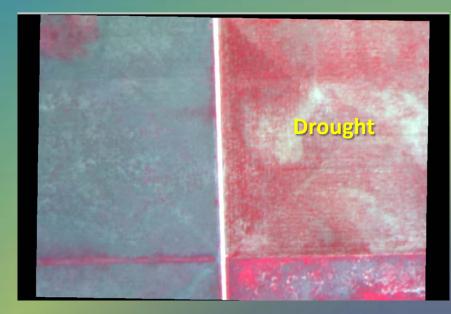
Investigate a transferability approach to spatially differentiate stress induced by *D. noxia* in wheat fields, that can be applied to cotton fields infested by Lygus bugs

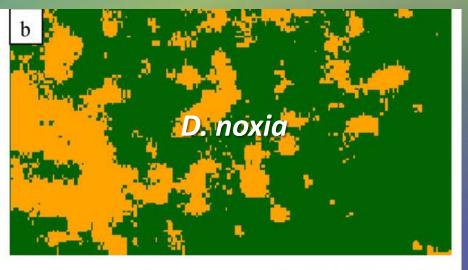
Approach

- Use multispectral remote sensing of wheat fields to create thematic maps of stressed fields using GIS
- Thematic maps were analyzed by spatial pattern metrics to differentiate stress caused by *D. noxia* from other stress factors

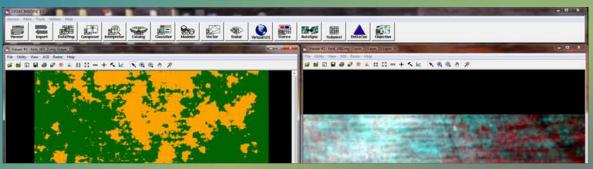
Methodology




Data acquisition multispectral images using Duncan Tech MS 3100 camera



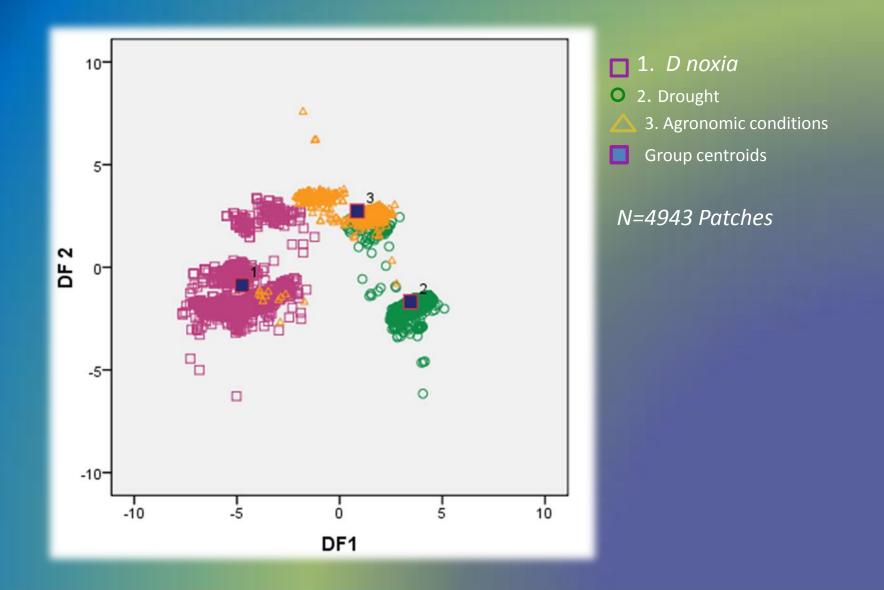
Agronomic conditions


Classified images of wheat fields showing the predominant types of stress: (a) and (b) D. noxia, (c) agronomic conditions, and (d) drought. Color green represents areas of healthy wheat plants.

- Erdas Imagine version 9.3
- Fragstats version 3.3
- SPSS version 17

File Fragstats Tools Help	
😅 📹 🗄 💊 🕹 🍇 🛍 🛗	
Statsort log	
Ready	NUM

2009_res	Sfied Law (DataSet1) - SPSS Statistics Data Editor	-							0.0
	yere Data Junctions Analytic Graphs (Differ	Add-gra Ufrekter							
1:10	D Bone_2009kputr-withed_001							Ma	3 0.000
	UD	TYPE	Stress	CA	PLAND	NP	PD	LPI	AREA_MN
1	D 'Bone_2009/nput/ws/field_001	RWA	1	0.3147	15.1775	869	41430 6346000000	0.1471	0.000
2	D 'Boise_2009/input/ws/field_002	RWA	1	0.3955	19.6167	480	23799 9968000000	1.5303	0.000
3	D \Boise_2009\inputres/deld_003	RWA	1	1.9672	18 5055	4083	38021 4527000000	0.1630	0.000
4	D \Boise_2009\inputrws\field_005	RWA	1	2,7605	16.5706	76.32	45812 7158000000	3.2724	0.000
5	D \Soise_2009/inputrie/deld_007	RWA	1	0.1417	17.3204	362	44260 8576000000	0.2997	0.000
6	D \Boise_2009\inputrwa\field_010	RWA	2	4.9375	35.1633	2178	15511.0441000000	9.1238	0.002
7	D.'Boise_2009/inputfile/deld_013	RWA.	1	3.6978	34.6445	1807	16929-8084000000	6.6717	0.002
8	D. Boise_2009/inputrwa/field_020	RWA	1	2.8722	30 2049	2432	25575.8007000000	2.0610	0.001
9	D \Bone_2009\upptrvs\feld_024	RMA	1	0.6991	17.8021	1029	26200 9540000000	6.3627	0.000
10	Difference 2000 menter altrate 040	Peace.		10000	10.1000	2012	202017 20202020	6 3406	0.000


Brief description of each spatial metrics

Field configuration	Spatial metrics	Abbreviations	Description
Size	Patch area	AREA	The measure of the size (m2) of each patch within a wheat field
	Patch perimeter	PERIM	Total distance around each patch (m)
Shape	Shape Shape index	SHAPE	The ratio of patch perimeter to the minimum perimeter for the maximally compact patch of the same patch area across the class
	Fractal dimension index	FRAC	The ratio of 2 times logarithm of patch perimeter to logarithm of patch area
Distribution	Proximity index	PROX	The ratio of the sum of patch areas to the nearest edge-to-edge distance squared between patches in a specific radius
	Euclidean Nearest Neighbor Distance	ENN	The measure of the shortest straight-line distance between the focal patch and its nearest neighbor of the same class

Results

Field Configuration	Spatial metrics	D. noxia	Drought	Agronomic conditions	<i>P</i> -value
		Mean (SE)	Mean (SE)	Mean (SE)	
Size	PATCH AREA (m²)	7.30 (1.11)	17:00(1.95)	3.14(0.81)	<0.0001
	PERIM (m)	16.30 (1.96)	26.57 (2.41)	7.43 (0.95)	<0.0001
Shape	SHAPE (unitless)	1.40 (0.02)	1.45 (0,03)	1.20 (0.02)	<0.0001
	FRAC (unitless)	1.12 (0.04)	1.60 (0.06)	0.87 (0.05)	<0.0001
Distribution	PROX (unitless)	78.96 (5.06)	38.90 (2.40)	27.64 (2.60)	<0.0001
	ENN (m)	1.80 (0.03)	1.20 (0.01)	1.40 (0.03)	<0.0001

Graph showing the spatial representation of each stress boundary

Validation data

	Stress Types	Pr	Total Patches		
		D. noxia	Drought	Agr. Conditions	
Count	D. noxia	454	0.0	9.0	463
	Drought	0.0	464	28	492
	Agr. Conditions	3.0	1.0	479	483
%	D. noxia	98.1	0.0	1.9	100.0
	Drought	0.0	94.3	5.7	100.0
	Agr. Conditions	0.6	0.2	99.2	100.0

Conclusion

- Potential exists to differentiate stress induces infested by *D. noxia* from other stress factors.
- Patch size, shape, and isolation\proximity metrics help in the stress differentiation
- Process required spatial pattern metrics from multispectral imagery
- Ultimate goal is to provide a non destructive, fast method for detecting infestation induced by the pest and ability to apply site specific pest control practices
- Does the potential exist to apply this approach to identify the factors from image products that describe the risk of infestation by Lygus bugs?

Acknowledgements

- Mr. Tim Johnson USDA-ARS Stillwater, OK
- Oklahoma Agricultural Experiment Station

• Thank you for listening